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Abstract

Phase diagram calculations require only the differences between the chemical potentials of the involved phases. This makes

it possible to use even arti®cial thermodynamic parameter sets which then have to be corrected by means of additional terms.

It is demonstrated that mass spectrometric investigations yield a simpler, but more effective algebraic description of the

thermodynamic ternary mixing behavior than the results of previous phase diagram assessments: mass spectrometric

measurements in the liquid phase, and in the restricted ®eld of fcc-phase in the system Fe±Ni±Cr together with the algebraic

descriptions of the three binary boundary systems Fe±Ni, Ni±Cr, and Cr±Fe as reported in previous works make it possible to

compute ternary phase equilibria in the system Fe±Ni±Cr, showing better agreement with the experimental phase equilibria

data than the assessments as reported by Kundrat and Elliot, Hillert and Qiu, and Lee. Additional advantage of the mass

spectrometric determined molar Gibbs energy is that the description of the magnetic contributions Z
�;mag
k �T ; x�� has been

merely reduced to the expressions of the pure species. # 1998 Elsevier Science B.V.
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1. Introduction

The construction of phase diagrams of alloy sys-

tems on the basis of metallographic information alone

requires a great deal of labor and materials. Particu-

larly in multi-component systems even the powerful

techniques of vacuum deposition of three kinds of

metals from three corners, and the multi-component

diffusion couple technique do not yield phase equili-

bria curves within realistic periods of time. However,

phase diagrams have not to be established exclusively

by experimental techniques. The determination of the

phase equilibria can also be based on thermochemical

equilibrium conditions, namely at constant tempera-

ture T the molar chemical potential (partial molar

Gibbs energy) ��j �T ; x�j � for each component j (here:

j�Fe,Ni,Cr; xj are the mole fractions) must be equal in

each of the coexisting phases �,�. . . (�,�,. . .�
l,f,b,s,. . .; l�liquid, f�fcc, b�bcc, s�sigma):

��j �T ; ��Fe; �
�
Ni; �

�
Cr� � ��j �T ; ��Fe; �

�
Ni; �

�
Cr�

� . . . �j � Fe;Ni;Cr�; (1)

where ��j ; �
�
j ; . . . are the equilibrium compositions in

the phases �,�,. . ..
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2. Phase diagram computations

Practical application of computational construction

of phase diagrams requires enormous calculations.

This procedure was prohibitive, therefore before the

industrial development of powerful and cheaper elec-

tronic data-processing machines (EDP) took place in

the sixties. In the seventies, it was especially the merit

of the CALPHAD group to push forward the devel-

opments of suitable EDP programs for analysis and

synthesis of the phase diagrams by means of computer

calculations. It should be noted that this method

permits the synthesis of the phase diagrams of real

alloys over a wide range of temperature and composi-

tion by computation combined with thermodynamic

analysis of the experimental data.

In the last years, the technique of computational

determination of molar Gibbs energy data suitable for

generating phase equilibria boundaries has become so

convenient that more and more authors are employing

it. However, very often there is a lack of reliable

experimental data. In case of multicomponent alloy

systems, such as the Fe±Ni±Cr ternary system includ-

ing the three binary boundary systems the thermo-

dynamic investigations for the determination of

reliable molar Gibbs energy data are also very time-

consuming, and, usually, beset with considerable

experimental dif®culties. Therefore, it may be under-

standable that more and more authors are ignoring the

lack of experimental investigations, and produce their

own sets of assessed data.

These authors will not always obey the risks of the

pure assessment-technique: in the thermochemical

equilibrium conditions, Eq. (1) only the differences

between the chemical potentials ���j �T ; x�j �ÿ
��j �T; x�j ��, ���j �T; x�j � ÿ . . .� of the considered phases

�,�,. . . are employed, and not absolute values. This

makes it possible to use many different sets of ther-

modynamic parameters to describe more or less satis-

factorily a binary phase diagram. However,

discrepancies between calculations and experimental

data of phase equilibria in higher order systems more

and more can be tracked back to assessments of lower

order systems based on those non-realistic thermo-

dynamic data.

Recently, Oates et al. [1] required to put more

physics into CALPHAD solution models. And even

Hillert, the founder and mentor of the ThermoCalc

group, regretted some developments in the phase

diagram engineering at the CALPHAD XXVI Con-

ference. He was concerned that CALPHAD had

reached a stage where its future scienti®c status might

be in danger [2].

2.1. Algebraic description of the molar functions

Phase diagram computations as well as computer-

aided mass spectrometry require algebraic formulas of

the molar functions Z (Z�Gibbs energy G, heat of

mixing H, entropy S). As long as the general character

of the molar properties cannot be derived theoretically,

suitable approximation formulas must be used. In the

phase �, the molar functions Z are splitted by common

modeling into various terms [3]

Z��T ; x�� � Z�;0�T� � Z�;id�T; x��
� Z�;E�T ; x�� � Z�;mag�T; x��;

(2a)

where x� is the mole fraction. Z�,0(T), and Z�,id(T,x�)

denote the contributions of the pure species, and

`ideal' alloy, respectively. In Eq. (2a), the terms

Z�,E(T,x�) and Z�,mag(T,x�) are assumed commonly

to be due to the intermolecular and magnetic forces,

respectively.

The molar functions Z, of an alloy system with K

components, are usually called `integral' molar prop-

erties of Z, and are expressed by means of the con-

tributions of their components, Z�k �T; x��,

Z��T ; x�� �
XK

k�1

x�Z�k �T ; x��: (2b)

2.2. Advantages of the `thermodynamically adapted

power' (TAP) series concept

The various pseudo-theoretical models as suggested

in literature yielded a variety of different formulas for

the thermodynamic mixing functions. Often, this

makes the employment and/or compilation of litera-

ture data dif®cult. In particular, the expressions of the

mixing properties as derived from the various models

of short-range ordering in the liquid phase cannot be

transformed to expressions commonly used in mixing

thermodynamics.
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Several dif®culties, as described above, may be

coped with by applying algebraic expansions to

describe the dependence of the molar excess functions

Z�,E(T,x�) on the mole fraction x�. It has been shown

[4] that the Weierstrass approximation theorem

[5] guarantees both: (i) that the molar excess func-

tions can be expressed by means of polynomials

of suf®cient high degree in the mole fraction x

without any loss of generality; and (ii) that the deri-

vatives of the excess functions Z�,E(T,x�) are repre-

sented by the derivatives of the approximation

expansion.

It makes sense, therefore, to use the simplest poly-

nomials for this purpose which ful®lls a priori the

boundary conditions of the thermodynamic excess

properties ZE (vanishing ZE-values for the pure com-

ponents, and the Gibbs±Duhem equation). Computa-

tional effort can then be saved, and mathematical

clarity is enhanced. In the late seventies and beginning

of the eighties one of the authors demonstrated at

several CALPHAD meetings that in case of binary

systems jÿk (in this work: j,k�1,2,3; 1�Fe, 2�Ni,

3�Cr) the expansion after Redlich±Kister

j;kZE�x� � xjxk

XN

n�1

j;kBn�xk ÿ xj�nÿ1; (3)

where N is the number of adjustable parameters j;kBn,

is the simplest formula published in literature which

covers all advantages of any other proposed approx-

imation formulas such as the �-formalism after Kor-

tuÈm, the Legendre polynomials, etc. This yielded the

broad application of the expansion for phase diagram

calculations.

However, some years later it has been proved [6]

that the simplest applicable polynomial for this pur-

pose is not the Redlich±Kister expansion, but a TAP

series:

j;kZE�x� � xj

XN

n�1

j;kCnxn
k ; (4)

where N is the number of adjustable parameters j,kCn.

Following the concept of using the simplest possible

polynomial, the molar ternary excess functions ZE (all

other indices omitted) are represented by

ZE �BBS ZE �t ZE; (5a)

where the BBSZE is the contribution of the three binary

boundary systems (in this work: 1�Fe, 2�Ni, 3�Cr)

BBSZE �1;2 ZE �2;3 ZE �3;1 ZE; (5b)

and tZE is the `ternary interaction term', a homoge-

neous polynomial in all three mole fractions xj (in this

work: j�Fe, Ni, Cr; tCZ
n adjustable ternary parameters;

n�1,2,. . .),

tZE�x1x2x3�tC1��tC2x1�t C3x2�t C4x3� � . . .�;
(5c)

Use of the TAP series concept makes possible to

approximate algebraically all types of molten metal

alloys, even those showing short-range ordering.

Additional advantage: the customary classi®cation

of molten metal alloys with respect to the complexity

of their molar excess quantities may be performed

with more clarity.

As an illustration of the considerable reduced com-

putational effort in case of using the TAP series

concept, in Table 1 are presented the expressions of

the contributions: (1) of the three binary boundary

systems of a liquid ternary, BBSZE; and (2) of its

derivative with respect to the mole fraction x2, in

terms of (a) TAP series, Eq. (4), and (b) Redlich±

Kister expansion, Eq. (3). Conversion of other poly-

nomial representations of the j,kZE(x) into the TAP

series, Eq. (4), and vice versa, can be performed easily

by means of the algorithm developed in Ref. [7].

2.3. The temperature dependence of the molar excess

quantities Z�,E(T,x�)

Within temperature ranges, in which the logarithms

of the partial pressures of all components may be

assumed to be proportional to the inverse temperature,

both the molar heat of mixing HE as well as the molar

excess entropy SE result as temperature independent.

The temperature dependence of the molar excess

Gibbs energy GE is then given by

GE�T� � HE ÿ TSE: (6)

Eq. (6) is equivalent to the assumption of vanishing

molar excess heat capacity (�Cp�0), which is

expressed by the rule of Neumann and Kopp, accord-

ing to which the difference between the heat capacity

of an alloy and the heat capacities of the correspond-

ing amounts of the pure species at the same tempera-
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ture is zero. Combining Eq. (6) with Eq. (4) and Eq.

(5) yields, ®nally, the required combined temperature

and concentration dependence of the molar excess

quantities ZE(T,x).

3. The system Fe±Ni±Cr

The introduction of a magnetic term Z�,mag in

Eq. (2a) is always problematic, because experimental

investigations will only yield the total excess sum

(Z�,E�Z�,mag). Especially, the databanks offered by

the ThermoCalc group are based on the use of mag-

netic terms Z�,mag as expressed by Sundman and

Agren [8]. From a physico-chemical point of view

their description of assumed magnetic in¯uence,

Z�,mag, looks strange, e.g. polynomials in temperature

up to the power 25 (!) are employed (compare [8]).

Nevertheless, in order to support the efforts of

establishing a general database for the reference states

of the elements, it is meaningful to employ the ele-

mentary magnetic contributions. However, consider-

ing binary systems, no reasons may be found to

support the problematical splitting of the deviation

from the ideal-solution model into two terms.

3.1. The binary boundary system Fe±Ni

Recently, Lee [9] reported that a revision of the

thermodynamic assessment data of the Fe±Ni liquid

phase as used by Hillert and Qiu [10] is necessary to

obtain a better agreement with the experimental data

on the bcc/liquid and fcc/liquid tie lines and liquidus

temperatures in the Fe-rich region of the Fe±Ni±Cr

ternary system than in the previous assessments of

Kundrat and Elliott [11], and Hillert and Qiu [10]

(compare Fig. 1). This is in full agreement with mass

spectrometric investigations of Fe±Ni alloys in the

liquid and in the fcc-solid phase, as published earlier

[12,13]. Nevertheless, these experimental data have

not been considered later on any more, not even in the

revision by Lee [9].

The resultant TAP coef®cients of Eq. (4) of the

mass spectrometric investigations of [12,13] are sum-

marized in Table 2. Fig. 1 shows that by means of

these data, the phase boundaries between the liquid

and the fcc-solid phase can be computed in full

agreement with the experimental data without any

binary magnetic correction term. In accordance to

Hillert and Qiu [10], and Lee [9], the contributions

of the pure species Z�,0(T) in Eq. 2 have been

expressed by means of the SGTE system of reference

states of pure elements [14],

Z
�;0
k �T� � c1;k � c2;kT � c3;kT ln T � c4;kT2

� c5;kT3� c6;k=T � c7;kT7 � c8;k=T9;

(7)

where cn,k (n�1,. . .,8; k�Fe, Ni, Cr) are element

dependent parameters.

The results of this work agree entirely with the

optimization of Hasebe and Nishizawa [15]. For alloys

Table 1

Expressions of the contribution of the three binary boundary systems to ZE

(1) BBSZE �1;2 ZE �2;3 ZE �3;1 ZE

(2) @BBSZE=@x2 � @�1;2ZE �2;3 ZE �3;1 ZE�=@x2

(a) TAP (n�1,. . .,N)
BBSZE � x1

P1;2
Cnxn

2 � x2

P2;3
Cnxn

3 � x3

P3;1
Cnxn

1

@BBSZE=@x2 � x1

P1;2
Cnxnÿ1

2 �nx1 ÿ x2� �
P2;3

Cnxn
3 ÿ x3

P3;1
Cnxnÿ1

1

(b) Redlich±Kister (BBSZE:n�1,. . .,N; @BBSZE=@x2: n�2,. . .,N)
BBSZE � x1x2

P1;2
Bn�x2 ÿ x1�nÿ1 � x2x3

P2;3
Bn�x3 ÿ x2�nÿ1 � x3x1

P3;1
Bn�x1 ÿ x3�nÿ1

@BBSZE=@x2 � �x1 ÿ x2�1;2B1 �
P1;2

Bn�x2 ÿ x1�nÿ2�2nx1x2 ÿ x2
1 ÿ x2

2��
x3�2;3B1 �

P2;3
Bn�x3 ÿ x2�nÿ2�x3 ÿ nx2�� ÿ x3�3;1B1 �

P3;1
Bn�x1 ÿ x3�nÿ2�nx1 ÿ x3��

(1) The three binary boundary systems of a ternary melt, BBSZE. (2) Its derivative with respect

to the mole fraction (x3�const.). In terms of (a) TAP series, Eq. (4), and (b) Redlich±Kister

expansion, Eq. (3).
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Fig. 1. The liquidus/solidus phase equilibria in the Fe±Ni system. Computations: this work, and Hasebe and Nishizawa [15]: ÐÐÐ; Larrain

[16]: . . .; Lee [9]: ± � ± Experimental data (full symbols: solid, open symbols: liquid): Hansen and Freeman [35], and Kase [36]: �; Bennek

and Schafmeister [37]: 5; Jenkins et al. [31]: -; Hellawell and Hume-Rothery [38], and Kundrat [39]: *; Predel and Mohs [40]: &.

Table 2

TAP parameters CZ
n of Fe±Ni alloys. This work: liquid and fcc-solid phase from mass spectrometric measurements [12,13]; bcc phase

optimized in this work from phase diagram calculations (CG
n � CH

n ÿ TCS
n ). Lee [9]: liquid phase optimized in Ref. [9]; bcc and fcc phase from

Hillert and Qiu [10]. Magnetic data from Ref. [10]. All data converted into TAP series concept

This work Lee [9]

Phase n
CH

n (J/mol) CS
n (J/mol K) CH

n (J/mol) CS
n (J/mol K)

liq 1 ÿ10500 ÿ1.85 ÿ6731 ÿ1.016

2 ÿ12000 ÿ2.35 ÿ20360 ÿ8.293

3 ÿ6000 ÿ5.05 0 0

bcc 1 ÿ2400 1.90 832.4 3.216

2 ÿ16000 ÿ7.10 ÿ3578 ÿ3.858

3 ÿ12000 ÿ4.00 0 0

fcc 1 ÿ6300 ÿ0.80 ÿ1698 1.177

2 ÿ12200 ÿ1.20 ÿ19260 ÿ8.902

3 ÿ7500 ÿ6.80 ÿ2903 0

Beta Tc

fcc/mag 1 Ð Ð 28.89 1451

2 Ð Ð ÿ75.26 1364

3 Ð Ð 97.88 0

4 Ð Ð ÿ49.44 0
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containing <40 at% Ni Larrain [16] compiled liquid±

fcc equilibria which agree well with the corresponding

results of Hasebe and Nishizawa [15], and of this

work. However, Larrain [16] compiled a melting

minimum which is ca. 5 K lower. The parameter

values as used by Lee [9] are also given in Table 2.

The results of Lee's [9] phase diagram optimization

for the liquid±solid equilibria are also plotted in

Fig. 1. Comparing with the results of this work in

Fig. 1 and Table 2 shows that the use of a magnetic

correction neither will simplify the thermodynamic

description nor improve the quality of the Fe±Ni phase

diagram.

Based on the mass spectrometric data of the liquid

and the fcc-solid phases the thermodynamic excess

behavior of the bcc-solid phase has been assessed as

presented in Table 2. Fig. 2 shows that the assessment

of this work yields fcc (
)±bcc (�) equilibrium lines in

full agreement with the compilation of Larrain [16].

The results of this work show a distinctly better

agreement with the experimental data of Owen and

Sully [17], and Owen and Liu [18] than the optimiza-

tion of Lee [9], which is also plotted in Fig. 2. Con-

cerning the fcc (
)±bcc (�) equilibrium lines Lee's

assessment using a magnetic fcc solid contribution

instead of the mass spectrometrically determined

excess Gibbs energies of Ref. [13] yielded distinctly

less agreement with experimental investigations.

3.2. The binary boundary systems Cr±Fe and Ni±Cr

In the Cr±Fe system mass spectrometric studies on

the bcc-solid phase [3] yielded again molar excess

Gibbs energies GE distinctly different to data assessed

previously by Anderson and Sundman [19], and Lee

[9]. As pointed out in Refs. [3,20], phase diagram

calculations based on these mass spectrometric data,

and on the SGTE reference states of pure elements

[14] yielded a better agreement with experimental

phase equilibrium data than the assessments by Ander-

son and Sundman [19], and Lee [9].

The advantage of constructing phase diagrams by

means of experimentally determined molar Gibbs

energies, is demonstrated also by considering the third

binary boundary system, Ni±Cr: the bcc solid Ni±Cr

alloys have been investigated, recently, by means of

the Knudsen cell mass spectrometry [21]. Despite, the

very restricted ®eld of the bcc phase these experi-

mental studies yielded molar excess Gibbs energies

GE which can be employed successfully for calcula-

tions of the binary phase diagram based on the SGTE

reference states of pure elements [14]: the results in

Ref. [21] agree well with the assessment by Nash [22].

3.3. Ternary phase equilibria

Construction of phase equilibria based on the

experimental thermodynamic data of the three binary

boundary systems as described above, and on the

ternary molar excess Gibbs energy GE assessed in

Refs. [11,10], respectively, could not be performed

successfully. This assured the authors to investigate

mass spectrometrically the ternary Fe±Ni±Cr system.

Experimental studies could be performed successfully

on both liquid and on the fcc solid alloys. Whereas the

phase ®eld of stable bcc solid Fe±Ni±Cr alloys is too

small for experimental investigations.

4. Mass spectrometric investigations

The Knudsen effusion technique in combination

with a mass spectrometer makes possible to determine

Fig. 2. Comparison of the computations of the fcc (
)±bcc (�)

phase equilibrium in the Fe±Ni system with experimental

informations [17,18]. This work: ÐÐÐ; Larrain [16]: - - -; Lee

[9]: -.-.
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the thermodynamic excess properties zE (z�G,H,S;

z�integral function Z, partial function Zj) of alloy

systems even at high temperatures. Following this

technique the sample is heated in an isothermal vessel

which is called `Knudsen cell'. Usually, Knudsen cells

are manufactured as (cylindrical) crucibles with a

small knife-edge shaped ori®ce (0.5±1.5 mm dia-

meter) in the lid. Inside the Knudsen cell the con-

densed sample is in thermodynamic equilibrium with

its gas phase. This Knudsen cell is now employed as a

`gas source', and the effusing molecular beam is

directed into the ionization chamber of the connected

high-temperature mass spectrometer (compare

[12,23,24]). The ion current intensities Jj of the

ionized vapor species are then detected by means of

an electron multiplier.

4.1. Thermodynamic evaluation

The ion current intensities of the characteristic

isotopes of the alloy components j (j�Fe, Ni, Cr)

are proportional to the corresponding partial pressures

in the Knudsen cell. This makes it possible to relate

them to the molar excess chemical potentials �E
j

(`Partial molar excess Gibbs energies GE
j ') of these

components j in the condensed phase. However,

Knudsen cell mass spectrometry will only yield the

vapor pressures of the investigated species in arbitrary

units. With metal alloy systems as the ternary Fe±Ni±

Cr the problems connected with the calibration of the

experimental values to absolute vapor pressure data

can be avoided by measuring the ion-current inten-

sities Jk of two alloy components. Choosing the two

characteristic isotopes 56Fe� and 52Cr� makes possi-

ble to determine directly the difference of the molar

excess chemical potentials of Fe and Cr, ��E
Fe ÿ �E

Cr�
by

�E
Fe ÿ �E

Cr � RT�ln�JFe=JCr� ÿ ln�xFe=xCr�
ÿtCG

0 �T�� (8)

where R is the gas constant. In Eq. (8)tCG
0 �T� denotes

the calibration constant for the two components Fe and

Cr in the corresponding phase of the ternary Fe±Ni±Cr

system. The tCG
0 �T� factor depends on isotope speci®c

data as well as on the actual ratings of the experi-

mental set-up [3,12]. Forming the corresponding TAP

expression for (�E
Fe ÿ �E

Cr) by means of Eq. 5, sub-

stituting in the left-hand side from Eq. (8), and rear-

ranging yields the required best-®t formula for the

determination of the TAP parameters aCn:

RT �ln�JFe=JCr� ÿ ln�xFe=xCr�� �tCG
0 �T�

��BBS�E
Fe ÿBBS �E

Cr� � x1x2x3�tCG
1 �T� � . . .�:

(9a)

with

BBS�E
j �Fe;Ni �E

j �Ni;Cr �E
j �Cr;Fe �E

j : (9b)

With the Fe±Ni±Cr system the mass spectrometric

measurements were performed in both the liquid as

well as the fcc-solid phases in 16 runs for eight

different alloy concentrations [20,25]. Employing

the best-®t technique as suggested in Ref. [26] enabled

one algebraic overall best-®t of all experimental data

along all investigated constant ratio sections. As

described above, the thermodynamic data of the three

binary systems are well-established in literature. The

best-®t problem, Eq. 9, is reduced, therefore, only for

adjusting the ternary parameters [20,25]:

RT �ln�JFe=JCr�ÿln�xFe=xCr��ÿ�BBS�E
FeÿBBS�E

Cr�
�tCG

0 �T� � x1x2x3�tCG
1 �T� � . . .�: (10)

4.2. Experimental

The Knudsen cell±mass spectrometric system

employed for investigations on ternary Fe±Ni±Cr

alloys was described recently in detail [23,24]. The

simple monopole instrument model MX 7304 (Elec-

tron, Ukraine) having the mass range 2±200 amu. was

modi®ed in the Institute of Physics of Materials

ASCR. The Knudsen cell part of the combination

with mass spectrometer consists of the alumina effu-

sion cell containing the sample, which was closed by

an alumina lid having an ori®ce of 1.1 mm diameter.

The alumina effusion cell is enclosed in an outer

molybdenum cell with a tantalum lid, which is heated

by a resistance furnace. The temperature of the sample

in the effusion cell is measured with a Pt/PtRh10

thermocouple, calibrated by means of the melting

points of several pure metal samples [24]. Ions were

formed by means of a 15 eV electron beam having a

current of 50 mA.
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4.3. Results and discussion

As reported elsewhere in detail, satisfactory best-

®ts are obtained for the measurements on both the fcc

solid [20,27] as well as the liquid [25,28] ternary Fe±

Ni±Cr alloys by using simple homogeneous polyno-

mials of third order as ternary interaction term (one

adjustable parameter). Fig. 3 shows the results for the

liquid Fe±Ni±Cr alloys for the mean temperature of

investigations, T�1850 K. In Fig. 4, the results of the

mass spectrometric investigations on fcc solid Fe±Ni±

Cr alloys at the mean temperature T�1650 K are

presented. The resultant molar excess Gibbs energies

GE are plotted in Fig. 5 for the liquid phase, and in

Fig. 6 for the fcc phase. As can be seen from Fig. 5,

the mass spectrometric investigations on liquid ternary

Fe±Ni±Cr alloys yielded at the mean temperature

1850 K negative molar excess Gibbs energies GE

nearly over the entire range of composition. Only

alloys with approximately binary Cr±Fe compositions

show slight positive GE-values. Details are presented

and discussed in Ref. [25]. Fig. 6 shows that at 1650 K

the molar excess Gibbs energy GE determined mass

spectrometrically in Refs. [20,27] are negative over

the whole ®eld of stable fcc phase. Concerning details

of the thermodynamic mixing behavior of fcc solid

ternary Fe±Ni±Cr alloys as well as for the discussion

of the results see [20].

5. Phase equilibria

The computational construction of ternary Fe±Ni±

Cr phase equilibria has been performed by means of

the so-called `PD-Package' (PD-pp) recently devel-

oped for isobaric phase equilibrium calculations [29].

The program is written in FORTRAN 77, and it is

based on the solution model for phases with several

components and sublattices, according to Sundman

and Agren [8]. Following this model, at constant

temperatures and pressures the computation of che-

mical compositions, and of relative weight amounts of

phases in thermodynamic equilibrium at given total

compositions are equivalent to the determination of

Fig. 3. RT[ln (JFe/JCr)ÿln(xFe/xCr)] as a function of the mole fraction xFe of liquid ternary Fe±Ni±Cr alloys at 1850 K (Overall best-fit curve

based upon Eq. (8) ÐÐÐ; Experimental points *). (a) xCr/xNi�0.19 [28]; (b) xCr/xNi�0.46 [25].
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the sets of weight amount of the individual compo-

nents in equilibrium phases at minimum of the total

molar Gibbs energy of the system. Of course, the

stoichiometry as well as the mass conservation law

have to be respected.

This so-called `integral formulation' of the thermo-

chemical equilibrium conditions, Eq. (1), represents

from the mathematical point of view a constrained

minimization problem. Such a problem can only be

solved by employing suitable numeric methods of

minimization. The PD-pp involves for this purpose

the corresponding subroutines generated by the `Uni-

versal Functional Optimization' system (UFO) [30] in

which special algorithms of the variable metric

method are programmed. The PD-pp makes possible

to deal with systems showing eight components con-

tained in four phases. The description allows employ-

ing of four sublattices in each phase at the most. The

computations are restricted by the limited precision of

the minimization program UFO which employs vari-

Fig. 4. RT[ln (JFe/JCr)ÿln(xFe/xCr)] as a function of the mole fraction xFe of fcc solid ternary Fe±Ni±Cr alloys at 1650 K (Overall best-fit curve

based upon Eq. (8) ÐÐÐ; Experimental points *). (a) xCr/xNi �0.17 [27]; (b) xCr/xNi�0.3 [20]; (c) xCr/xNi�0.4 [20].

J. Tomiska, J. Vrestal / Thermochimica Acta 314 (1998) 155±167 163



ables and functions in the usual FORTRAN double

precision declaration (REAL*8). However, neither in

binary nor in ternary systems these restrictions will

in¯uence the construction of phase equilibria in any

way [29]. Test calculations on several published phase

diagram data proved the reliability of the algorithm

developed in PD-pp [29]. Furthermore, computation

of the phase equilibria of the binary alloy systems Fe±

Ni, Cr±Fe, Ni±Cr, and Co±Cr by means of PD-pp

yielded identical results as employing an algorithm

[21], which makes possible to solve Eq. (1) directly by

means of the generalized Newton method.

The contributions of the pure species Z�,0(T) in Eq.

(2) have been expressed by means of the SGTE system

of reference states of pure elements, Eq. (7), and the

description of the magnetic contributions

Z
�;mag
k �T; x�� has been merely reduced to the expres-

sions of the pure species. For this purpose the algo-

rithm from Sundman and Agren [8] has been chosen,

consequently.

The computational construction of phase equilibria,

as described above, yields the liquidus and fcc solidus

in the three phase liquid±fcc±bcc equilibrium from

1618 K (binary Ni±Cr) up to 1775 K (binary Fe±Ni),

according to the new description of the thermody-

namic mixing behavior, as presented in Fig. 7. The

corresponding results of experimental investigations

performed by Jenkins et al. [31], and SchuÈrmann and

Voss [32] as well as the results of the previous

assessments [9,10] are also plotted in Fig. 7. Compar-

ison shows good agreement between the computations

based on mass spectrometric investigations and the

experimentally determined points.

As can be seen from Fig. 7 the assessment of

Kundrat and Elliot [11] deviates distinctly from the

common accepted liquidus equilibrium concentration

Fig. 5. Molar excess Gibbs energy GE of liquid ternary Fe±Ni±Cr

alloys at 1850 K in J/mol.

Fig. 6. Molar excess Gibbs energy GE of fcc solid ternary Fe±Ni±

Cr alloys at 1650 K in J/mol. Fcc phase field boundary: ± ± ±.

Fig. 7. The Fe content of the (a) liquid and, (b) fcc-solid phase of

the three phase equilibrium liquid±fcc±bcc vs. temperature in the

Fe±Ni±Cr system. Experimental data: Binary Fe±Ni [12]: &;

Binary Ni±Cr [21]: ~; Jenkins et al. [31]: &; and by SchuÈrmann

and Voss [32]: *; Calculations: This work: ÐÐÐ; Kundrat and

Elliot [11]: - - -; Hillert and Qiu [10]: ± � ±; Lee [9]: . . ..
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of the binary boundary system Ni±Cr. The boundary of

liquid phase in three phase liquid±fcc±bcc equilibrium

as reported by Hillert and Qiu [10] shows especially in

the medium temperature interval (1720±1640 K) more

deviations from the experimental data than the corre-

sponding determined in this work (Fig. 7). As

described in the beginning, Lee [9] performed a revi-

sion of the thermodynamic assessment of the Fe±Ni

liquid phase to obtain a better agreement with the

experimental data on the bcc/liquid or fcc/liquid tie

lines and liquidus temperatures in the Fe-rich region of

the Fe±Ni±Cr ternary system than in the previous

assessments. Fig. 7 shows that Lee [9] obtained a

dependence of the liquidus temperatures on the Fe

content in the three phase liquid±fcc±bcc equilibrium

which is closer to the experimental data than in the two

previous assessments, but not as close as the results of

this work.

Fig. 8 shows the calculated isothermal section of

the fcc±bcc equilibrium of the Fe±Ni±Cr system at

1473 K. The required mixing behavior of the bcc solid

Fe±Ni±Cr alloys has been assessed by means of the

results of the mass spectrometric investigations on

liquid and on fcc solid Fe±Ni±Cr alloys. As can be

seen from Fig. 8, the resultant phase boundaries agree

well with the experimental data by Schultz and Mer-

rick [33], Hasebe and Nishizawa [15] and Mundt and

Hoffmeister [34].

Finally, the liquidus, fcc solidus and bcc solidus in

equilibrium at 1770 K, according to the new descrip-

tion of the thermodynamic mixing behavior, are pre-

sented in Fig. 9 together with the results of

experimental investigations performed by SchuÈrmann

and Voss [32], and Kundrat and Elliot [11]. Also

plotted in Fig. 9 are the liquid phase boundaries as

constructed by Kundrat and Elliot [11], and Hillert and

Qiu [10]. As can be seen from Fig. 9, after SchuÈrmann

and Voss [32] the liquid±fcc solid two-phase region is

shifted to alloys containing about 2 at% more Fe than

reported by Kundrat and Elliot [11]. However, the

melting and solidi®cation temperatures of the binary

Fe±Ni alloys cover only a small temperature interval

of ca. 100 K over the whole range of compositions.

And, the two binary boundary systems Fe±Ni and Cr±

Fe show very narrow liquid±solid two-phase regions.

Therefore, a more precise experimental determination

of temperature dependence of the corresponding bin-

ary and ternary equilibrium compositions cannot be

expected.

Following the improved binary Fe±Ni phase dia-

gram, the liquid±fcc solid equilibrium concentration

Fig. 8. The isothermal section of the Fe±Ni±Cr system at 1473 K

for fcc±bcc equilibrium. This work: ÐÐÐ; Experimental data:

Schultz and Merrick [33]: *; Hasebe and Nishizawa [15]: &; and

Mundt and Hoffmeister [34]: *.

Fig. 9. The liquidus, fcc solidus, and bcc solidus equilibrium lines

at 1770 K in the Fe±Ni±Cr system. Experimental data: SchuÈrman

and Voss [32], liquidus: &, solidus: &, Kundrat and Elliot [11] *;

Calculations: This work: ÐÐÐ; liquidus line from Kundrat and

Elliot [11]: - - -; liquidus line from Hillert and Qiu [10]: ± � ±.
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determined experimentally by Kundrat and Elliot [11],

as well as the computed liquidus lines of these authors,

and of Hillert and Qiu [10] are shifted a bit to much to

the Ni corner of the Fe±Ni±Cr ternary phase diagram

(Fig. 9). As can be seen from Fig. 9, by means of

computations based on the mass spectrometric inves-

tigations a liquid±fcc solid two phase region is

obtained which is in reasonable agreement with the

results of both experimental investigations. Fig. 9

shows that the computations of this work yield a

liquid±bcc solid two phase region which is in full

agreement with the experimental results of SchuÈrmann

and Voss [32], whereas the corresponding liquidus of

the assessments by Kundrat and Elliot [11], and Hillert

and Qiu [10] show deviations.

6. Conclusions

The mass spectrometric measurements in the liquid

phase, and in the restricted ®eld of fcc-phase in the

system Fe±Ni±Cr, together with the algebraic descrip-

tions of the three binary boundary systems Fe±Ni of

this work (based on [3]), Ni±Cr from [12], and Cr±Fe

from [21] yield a simpler, but more effective algebraic

description of the thermodynamic ternary mixing

behavior, than the results of previous phase diagram

assessments. These data make it possible to compute

ternary phase equilibria in the system Fe±Ni±Cr,

showing better agreement with the experimental

phase-equilibria data than the assessments as reported

by Kundrat and Elliot [11], Hillert and Qiu [10], and

Lee [9]. Additional advantage of the mass spectro-

metric determined molar Gibbs energy is that the

description of the magnetic contributions

Z
�;mag
k �T ; x�� has been merely reduced to the expres-

sions of the pure species.
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